
Leksah IDE
Release 0.16

Mar 16, 2018

Contents

1 Introduction 3
1.1 Further Information . 4
1.2 Release Notes . 4

2 Installing Leksah[sec:Installing-Leksah] 7
2.1 How to Install: Brief Instructions . 7
2.2 Microsoft Windows . 7
2.3 Mac OS X . 7
2.4 Linux from Distro Packages . 8
2.5 Install from Hackage . 8
2.6 Post Installation steps . 8
2.7 First start of Leksah . 9
2.8 First start dialog . 9

3 Hello World example 13

4 The Editor 15
4.1 Find and Replace in the current folder . 16
4.2 Source Candy . 16
4.3 [sub:Completion]Completion . 18
4.4 [sub:Using-the-Flipper]Using the Flipper to Switch Between Editors 18
4.5 [sub:Editor-Preferences]Change Your Preferences for the Editor . 19
4.6 Further info . 20

5 Module Browser and Metadata 21
5.1 The Module Browser . 22
5.2 The Search Pane . 24

6 Debugger and Interpreter mode 27

7 [sub:Metadata-collection]Metadata collection 29
7.1 Background infos . 29

8 Configuration 31
8.1 Layout . 31
8.2 [sub:Session-handling]Session handling . 32
8.3 [sub:Shortcuts]Shortcuts . 33

i

8.4 Configuration files . 33

9 The Leksah Project 35

10 Appendix 37
10.1 Command line arguments . 37
10.2 The Candy file . 38
10.3 The Keymap file . 39

11 Indices and tables 41

ii

Leksah IDE, Release 0.16

These docs are outdated, we are working on getting them up-to-date for the next release

Contents:

Contents 1

Leksah IDE, Release 0.16

2 Contents

CHAPTER 1

Introduction

These docs are outdated, we are working on getting them up-to-date for the next release

Leksah is an IDE (Integrated Development Environment) for the programming language Haskell. It is written in
Haskell and integrates various tools available for writing programs in Haskell: the GHC compiler and interpreter, the
CABAL package management system (the Common Architecture for Building Applications and Libraries), Haddock
for producing documentation, etc. in one, single, comprehensive and easy to use environment. It allows the developer
to concentrate on writing the program and Leksah gives him easy access to all information she needs and helps with
the necessary housekeeping for compiling, linking and package management.

A unified focus for translating source code to executable programs: Leksah introduces the notion of a workspace that
can include several packages transparently: to the programmer it appears as if there were a single program with a
simple “make” command. Leksah manages rebuilding and installing packages as far as desired automatically.

Support for writing source code: Leksah supports debugging with GHCi, evaluation of expressions, gathering type
information, setting breakpoints, displays values at breakpoints, etc. is all possible from within Leksah.

Last, but not least, Leksah collects information about installed packages, helps to find function names and their type
and offers an auto-completion feature while you type new code.

The features of Leksah often reflect directly features of the Haskell tools used; therefore, to understand behavior in
special cases needs sometimes reading the specific documentation of GHC, Cabal or Haddock, (and this manual, to a
degree repeats what is found, with more detail and authority, in the respective tool documentation).

Leksah is written in Haskell, which means the Leksah developers use Leksah to develop Leksah and users of Leksah
can read the code and contribute improvements. Leksah uses GTK+ as GUI Toolkit with the gtk2hs binding. It is
platform independent and runs on any platform where GTK+, gtk2hs and GHC can be installed. It is used on Linux,
Windows and Mac.

This document is a reference to the functionality of Leksah, it is not intended to be a tutorial. Since Leksah is still
under development the information may be incomplete or superseded.

The current version is 0.8.

3

Leksah IDE, Release 0.16

1.1 Further Information

The home page for Leksah is leksah.org. Stable version of Leksah can be installed from Hackage hack-
age.haskell.org/package/leksahusing Cabal install. The source code for Leksah is hosted under code.haskell.org/leksah
and code.haskell.org/leksah-head. The Leksah user Wiki is haskell.org/haskellwiki/Leksah. The Leksah forum
can be accessed at groups.google.com/group/leksah/topics. The current version of this manual can be found at
leksah.org/leksah_manual.pdf. An issue tracker to collect bug reports and suggestions for improvements is at
code.google.com/p/leksah/issues/list. You can contact the developers at info (at) leksah.org.

For information about the Programming language Haskell go to www.haskell.org. The GHC computer is found at
www.haskell.org/ghc. For information about gtk2hs www.haskell.org/gtk2hs/. For information about GTK+ go to
www.gtk.org.

1.2 Release Notes

1.2.1 Version 0.8 Release March 2010

The 0.8 release adds the notion of workspaces to allow develop comfortably projects, where part of the code is in
separate packages. This changes the handling of packages to a degree, which has been improved with introducing
suitable defaults: a simple, single-shot program can be started with very few clicks and entering not much more than
the name of the program; Leksah becomes usable even for just quickly testing an idea. Other changes include:

• Better metadata with non exported definitions for workspace packages

• Support for prebuild metadata packages

• Better completion (keywords, language extensions, module name, non exported definitions)

• Splittet in a client and server part (Client part doesn’t import ghc-api)

• Added support for Ghc 6.12

• Prepared for Yi (Abstract TextEditor interface, not ready for use)

• Various other changes improve usability and stability of the platform.

A large number of bugs has been fixed, but there remain, probably a large number of, bugs - some old and not yet
fixed and some new ones. We expect also to improve and streamline the user interface in the next minor release to
achieve more consistency and make Leksah easier to learn. You may see comments to this effect in this document,
suggesting possible changes in the interface. Your opinion on these and other possible improvements you see will be
highly appreciated!

Version 0.8 works with GHC 6.10 and 6.12. The installation is described in for the standard case, more up to date in-
formation on installation may be found on the Wiki haskell.org/haskellwiki/Leksah. If you have any trouble installing,
please check the Wiki, the forum or contact the developers to find a solution. A smooth implementation is a priority
for us and we like to hear about difficulties you encounter to fix them; please report them on the bug and issues tracker
code.google.com/p/leksah/issues/list.

1.2.2 Version 0.6 Beta Release Juli 2009

The 0.6 version introduces an interpreter/debugger mode. This mode can be switched on and off from the toolbar. In
interpreter/debugger mode expressions can be evaluated and the type of expressions can be dynamically shown. The
GHCi debugger is integrated, so that breakpoints can be set, it is possible to step through the code, observe the values
of variables and trace the execution history.

4 Chapter 1. Introduction

http://leksah.org
http://hackage.haskell.org/package/leksah
http://hackage.haskell.org/package/leksah
http://code.haskell.org/leksah
http://code.haskell.org/leksah-head
http://haskell.org/haskellwiki/Leksah
http://groups.google.com/group/leksah/topics
http://leksah.org/leksah_manual.pdf
http://code.google.com/p/leksah/issues/list
mailto:info@leksah.org
http://www.haskell.org
http://www.haskell.org/ghc
http://www.haskell.org/gtk2hs/
http://www.gtk.org
http://haskell.org/haskellwiki/Leksah
http://code.google.com/p/leksah/issues/list

Leksah IDE, Release 0.16

The other features of Leksah like building in the background and reporting errors on the fly work in debugger mode as
in compiler mode (but not configuring, installing, etc. of packages).

Another new feature is integration of grep and text search with regular expression. This can be accessed from the
findbar.

The GUI framework has been enhanced, so that layouts can be nested in so called group panes. This feature is used
for the debugger pane. Furthermore notebooks can be detached, so that Leksah can be used on multiple screens.

A lot of little enhancements has been made and numerous bugs has been fixed.

Known bugs and problems:

• The package editor works only for cabal files without configurations.

• MS Windows: The check for external modifications of source files does not work.

• MS Windows: Interruption of a background build does not work.

• GUI History still not working.

• Traces pane of the Debugger does not work appropriately.

1.2.3 Version 0.4 Beta Release February/March 2009

The 0.4 Release is the first beta release of Leksah. It should be usable for practical work for the ones that wants to
engage with it.

It depends on GHC 6.10.1 and gtk2hs 0.10.0.

The class pane and the history feature are not quite ready, so we propose not to use it yet.

1.2.4 Version 0.1 Alpha Release February 2008

This is a pre-release of Leksah. The editor for Cabal Files is not ready, so we propose not to use it yet. w

1.2. Release Notes 5

Leksah IDE, Release 0.16

6 Chapter 1. Introduction

CHAPTER 2

Installing Leksah[sec:Installing-Leksah]

These docs are outdated, we are working on getting them up-to-date for the next release

2.1 How to Install: Brief Instructions

You can install from

• a binary installer for your operating system, which is typically Windows or Macintosh.

• a package for your platform, which is currently Arch Linux and Fedora Linux, and Debian(Ubuntu) is in prepa-
ration.

• install from sources from Hackage via cabal install leksah

• leksah or leksah-head development repositories. (If you want the very last or want to help with Leksah develop-
ment).

You can consult the Download page for up-to date information and try the user Wiki for further help.

2.2 Microsoft Windows

1. Install Haskell Platform with an installer for Windows (alternatively install Ghc directly)

2. Make sure wget and grep are on the path of your Windows shell

3. Install Leksah from the most recent binary installer for Windows.

4. Go to the post installation section.

2.3 Mac OS X

1. Install Haskell Platform with an installer for Mac OS X (alternatively install Ghc directly)

7

Leksah IDE, Release 0.16

2. Make sure wget and grep are on the path.

3. Install Leksah from the most recent binary installer for Mac

4. Go to the post installation section.

2.4 Linux from Distro Packages

1. Install Leksah with the package management system of your Linux platform, which should pull all prerequisites
automatically.

2. Go to the post installation section.

2.5 Install from Hackage

1. Install Haskell Platform (alternatively install Ghc directly, install Cabal and cabal-install)

2. Install gtk2hs in a version compatible with the installed Ghc compiler (Currently gtk2hs can’t be installed via
Hackage, but this should be possible in the near future, so that you don’t have to care about this step any more).
Make sure the gtk2hs gtksourceview2 package gets built and installed.

3. open a Console and do:

cabal update
cabal install leksah

4. Go to the post installation section.

2.6 Post Installation steps

1. Until the next release of gtk2hs, for a pleasant visual appearance, you have to copy or append the .gtkrc-2.0 file
from the Leksah data folder or from the data folder in Leksah sources to your home folder. If you miss the step,
the cross [x] buttons on tabs are almost invisible (or don’t fit in tabs). This step may become obsolete during the
0.8 release cycle.

cd ~
wget http://code.haskell.org/leksah/leksah/data/.gtkrc-2.0 -O

.gtkrc-2.0-leksah
echo -e ’\ninclude .gtkrc-2.0-leksah’ >> .gtkrc-2.0

2. Before you start Leksah for the first time, do a:

ghc-pkg recache

It has been observed, that a package recache is often necessary after installation. The symptom is an empty
Module Browser, if you select the System scope.

8 Chapter 2. Installing Leksah[sec:Installing-Leksah]

http://code.haskell.org/leksah/leksah/data/.gtkrc-2.0

Leksah IDE, Release 0.16

2.7 First start of Leksah

The first time you start Leksah it will take you through the follow steps:

1. You are asked to fill in a form telling Leksah where your Haskell sources are (if you are not sure or just want to
test, you can accept the defaults and correct them later in the “metadata” preferences)

2. Leksah collects “metadata”, i.e. exported symbols and their type, comments explaining them etc. for all installed
packages on your machine. This step may take a while and may give no feedback or a lot of strange errors and
warnings, don’t worry but be patient.

3. The Leksah IDE starts and you can start working.

Later starts will read in the previously collected metadata and check only for changes. After starting up, Leksah will
open its Main window in a standard configuration.

Progress on your first contact with Leksah:

1. Start with the, infamous, “Hello World” example. The next section gives you a step by step description.

2. Then it might be the best to construct a workspace and add an existing project and explore Leksah while you
work on it.

2.8 First start dialog

Fig. 2.1: [fig:FirstStart-dialog]First-Start dialog

When you start Leksah for the first time it must collect the information about the packages you have on your computer
and may use in your projects. The first start dialog let you enter settings about this process. Leksah then collects

2.7. First start of Leksah 9

Leksah IDE, Release 0.16

information about exported symbols, their type and possible comments (collectively called metadata) to support your
work, e.g. by suggesting auto-completion and type information about functions you may use while you edit your
source.

Later you can change this settings in the preferences pane in Leksah and you can rebuild the metadata at any time.
leksah-server -sbo +RTS -N2 from the console. Details about metadata collection can be found here:
[sub:Metadata-collection].

If you want to start from scratch again delete or rename the .leksah-*.* folder in your home folder. Then you will see
the first start dialog again.

In the first start dialog you are asked for:

1. The location of folders, where Haskell source code for installed packages can be found. This is important for
packages which can’t be found on Hackage.

2. Maybe a directory, where Leksah will unpack source files for packages. If you give no directory here, Leksah
will not try to unpack the sources.

3. Some packages are difficult to process with Haddock. So we provide some prebuild metadata. If you allow this,
Leksah will look for prebuild metadata, if sources are available, but Haddock fails to process.

4. The port number used for the local connection to the Leksah server.

5. By default the Leksah server terminates with the last connection. You can change this setting here.

Leksah collects information about all installed packages on your system that will take some time (minutes to half an
hour) the first time. Errors occuring in this metadata collection step indicate only that Leksah has not succeeded to
extract the source locations and comments from a module or package; they are not consequential, except that some
metainformation may be missing. The metadata is cached and future starts only scan newly installed packages, starts
only information for new packages will be installed.

10 Chapter 2. Installing Leksah[sec:Installing-Leksah]

Leksah IDE, Release 0.16

Fig. 2.2: Leksah after first start

2.8. First start dialog 11

Leksah IDE, Release 0.16

12 Chapter 2. Installing Leksah[sec:Installing-Leksah]

CHAPTER 3

Hello World example

These docs are outdated, we are working on getting them up-to-date for the next release

• Workspace -> New. Constructs a new workspace in a selected folder and give it a name (e.g. “Hello”). This
produces a file Hello.lkshw.

• Package -> New and use the Create Folder button to make a new folder for the package. Make sure to be in
this folder when you click “Open”. An editor opens up, which let you edit cabal files. The name proposed for
your package is the name of the folder you just constructed. That is the convention with Cabal packages. The
defaults are set for creating a simple executable. The base package is specified as build dependencies, and an
executable with the name of the package will be constructed. The main module resides in a file “Main.hs”. The
sources are in a “src” subdirectory of the packages.

• Click Save to write the .cabal file.

• The main module gets automatically constructed and opens.

• Now add your code to the module

main = putStrLn Hello World .

• By default, auto build is on and you can see that the file will be compiled in the Log pane.

• Choose Package -> Run or ctrl-alt-r, and you will see Hello World in the Log pane.

• Or: Choose Package -> Install, open a Shell and try out your newly created executable

Congratulations ! you have now entered, compiled, linked and run your first Haskell program with Leksah. It is as
easy as: Create workspace / New package / enter your code/ Run. Remember:

• the project folder is the folder in which your .cabal file for the project is stored.

• A workspace is just a file, which contain information about included packages.

• You see what Leksah is doing by observing the output from the Log window.

Furthermore:

• You can add Packages with the context menu in the workspace pane. You can construct new packages with
Package -> New, from the menubar.

13

Leksah IDE, Release 0.16

• You can add other modules by selecting “Add module” from the context menu of the modules pane of the
browser group.

• You can open panes you need by selecting Panes -> Browser | Log | . . . from the menubar.

• You can editing modules by selecting them in the Browser. You can search in the modules pane of the browser
by typing text.

You may as easily debug it

• Switch debugger Mode on.

• Pane -> Debugger

• Select the word main in your code

• Right click and choose Eval from the pop-up menu or press ctrl-enter.

• Switch of debugger Mode if you want to compile an executable.

14 Chapter 3. Hello World example

CHAPTER 4

The Editor

These docs are outdated, we are working on getting them up-to-date for the next release

O0.3

|image|

Most of the time programming is editing source code. To edit Haskell source files Leksah uses the GtkSourceView2
widget. It provides editing, undo/redo, syntax highlighting and similar features. In the file menu ([fig:File-menu]) you
find the customary functionality to open, save, close and revert files. To avoid confusion, it is useful to be able to close
all files, or all files which are not stored in or below the top folder of the current project (this is the folder where the
.cabal file resides) at once - this helps you focus on your project. This way it is as well possible to close all files, which
don’t belong to a workspace.

o0.3

|image|

Leksah does not store backup files. Leksah detects if a file which is currently edited has changed on disk and queries
the user if a reload is desired. (Attention: This don’t currently work for Windows, so take care). When you open a
file which is already open, a dialog pops up to inquire if you want to make the currently open file active, instead of
opening it a second time (Leksah does not support multiple views on a file, but if you open a file a second time, it’s
like editing the file two times, which makes little sense). The list of files is shown as notebook tabs (on top or left of
the files - as you prefer (Menu -> View -> Tabs Left).

When a file has changed compared to the stored version, the file name is shown in red in the notebook tab, reminding
you that it needs to be saved before compilation.

If you want to change to a different file editor buffer you can open a list of all open files by pressing the right mouse
button, while the mouse is over a notebook tab. You can then select an entry in this list to select this file. (See
[sub:Using-the-Flipper] for a better way to switch between source files).

On the right side in the status bar at the bottom you can see the line and column, in which the cursor currently is; and if
overwrite mode is switched on. In the second compartment from the left you can see the currently active pane, which
is helpful if you want to be sure that you have selected the right pane for some operation.

In the edit menu ([fig:Edit-menu]) you find the usual operations: undo, redo, cut, copy, paste and select all. In addition
you can comment and un-comment selected lines in a per line style (–); however, the comment symbol must start in

15

Leksah IDE, Release 0.16

the first column (beware of illegal sequences like –# which may be automatically produced by inserting a comment in
front of some symbol).

Selected blocks of code can be shifted left or right using the tab or Tab/Shift-Tab keys. Furthermore, you can align
some special characters (=,<-,->,::,|) in selected lines. The characters are never moved to the left, but the operation
is very simple and takes the rightmost position of the special character in all lines, and inserts spaces before the first
occurrence of this special characters in the other lines for alignment.

4.1 Find and Replace in the current folder

Leksah supports searching in text files. When you select Edit/Find from the menu the find bar will open ([fig:Find-
bar]) and you can type in a text string. Alternatively you can hit Ctrl-F or select a text and hit Ctrl-F (a standard
keystrokes binding, which can be configured, see [sub:Shortcuts]). Pressing the up and down arrow will bring you
to the next/previous occurrence of the search string. Hitting Enter has a similar effect as the down arrow. Hitting
Escape will closes the find bar and sets the cursor to the current find position. You have options for case sensitive
search (labeled “c.S.”), for searching only whole worlds (toggle Words) and for wrapping around (button Wrap),
which means that the search will start at the beginning/end of the file, when the end/beginning is reached. If there is
no occurrence of the search string in the currently open file the entry turns red.

You can search for regular expressions by switching on the Regex option. Leksah supports regular expressions in the
Posix style (by using the regex-posix package). When the syntax of regular expressions is not legal, the background
of the find pane turns orange.

Fig. 4.1: [fig:Find-bar]Find bar

To replace a text enter the new text in the replace entry and select replace or replace all.

The last field on the line gives you a mean to jump to a certain line number in the current text buffer.

4.1.1 Search in the package: Grep

Searching for text in all files in a package is often useful For this feature the grep program must be on your path. You
can then enter a search string in the find bar and search for all occurrences for the string in the folder and sub-folder of
the current package with pressing the Grep button. A pane will open ([fig:Grep-pane]), and in every line show where
the expression was found (with context). By clicking on the line, the file is opened in an editor and the focus is set to
the selected line. You can navigate between lines with the up and down keys.

Greps supports the search for regular expressions.

4.2 Source Candy

When using Source Candy, Leksah reads and writes pure ASCII Code files, but can nevertheless show you nice
symbols like This is done by replacing certain character combinations by a Unicode character when loading a file or
when typing, and replace it back when the file is saved.

The use of the candy feature can be switched on and off in the menu and the preferences dialog.

This feature can be configured by editing a .candy file in the .leksah folder or in the data folder. The name of the candy
file to be used can be specified in the Preferences dialog.

Lines in the *.candy file looks like:

16 Chapter 4. The Editor

Leksah IDE, Release 0.16

Fig. 4.2: [fig:Grep-pane]Grep pane

Fig. 4.3: Source candy example

4.2. Source Candy 17

Leksah IDE, Release 0.16

The first entry in a line are the characters to replace. The second entry is the hexadecimal representation of the Unicode
character to replace with. The third entry is an optional argument, which specifies, that the replacement should add
and remove blanks to keep the number of characters. This is important because of the layout feature of Haskell. The
last entry in the line is an optional comment, which is by convention the name of the Unicode character.

Using the source candy feature can give you problems with layout, because the alignment of characters with and
without source candy may differ!

Leksah reads and writes files encoded in UTF-8. So you can edit Unicode Haskell source files. When you want to do
this, switch of source candy, because otherwise Unicode characters may be converted to ASCII when saving the file.

4.3 [sub:Completion]Completion

Leksah has the ability to auto complete identifiers in text you type. Additionally the Package, Module and Type of
the id gets displayed if selected. The completion mode can either be always on, or only be activated on pressing
Ctrl+Space (or a user defined keystroke). You can choose between these two possibilities in the Preferences.

Fig. 4.4: Completion

Autocompletion has currently limitations:

• locally defined names are not included

• Qualified imports are not handled

• All names from all packages imported are provided; this may be more than you want

4.4 [sub:Using-the-Flipper]Using the Flipper to Switch Between Edi-
tors

You can change the active pane using a keyboard shortcut to bring up the flipper. It lists the most recently used panes
first so they are easier to get to. The default shortcuts for the flipper are Ctrl+Tab and Ctrl+Shift+Tab or Ctrl+Page
Down and Ctrl+Page Up.

The approach in Leksah is comparable to the Alt+Tab and Alt+Shift+Tab used to switch between programs in the OS
(Ubuntu, Windows).

18 Chapter 4. The Editor

Leksah IDE, Release 0.16

4.5 [sub:Editor-Preferences]Change Your Preferences for the Editor

Fig. 4.5: Editor Preferences

When selecting Configuration / Edit Prefs the preferences pane opens, which has a selection called Editor (Figure
8), were you can edit preferences for the editor. Some of the options you find here refer to visual elements, like the
display of line numbers, the font used, the display of a right margin and the use of a style file for colors and syntax
highlighting.

You can set here the Tab size you want. Leksah always stores tabs as spaces. Using hard tabs is not recommended for
Haskell and the Haskell compilers allow only tab size of 8.

Leksah offers as well to remove trailing blanks in lines, which you may choose as default, because blanks at the end
of lines make no sense in source code.

4.5. [sub:Editor-Preferences]Change Your Preferences for the Editor 19

Leksah IDE, Release 0.16

4.6 Further info

The work with the editor is influenced by other features

• For background building, which may save your files automatically after every change refer to [sub:Background-
Build].

• For information about editor preferences go to [sub:Editor-Preferences].

20 Chapter 4. The Editor

CHAPTER 5

Module Browser and Metadata

These docs are outdated, we are working on getting them up-to-date for the next release

o0.3

lc sort & symbol function & data & constructor & slot & type & newtype & class & member & instance & rule &

Leksah collects data about the modules of all installed Haskell packages on your system. It does this by reading the
Haskell interface files .hi files (from GHC). It as well collects source positions and comments from sources. For this
it looks in the source directories you specified in the preferences and downloads and unpacks sources from Hackage
depending on your settings. Starting from the current version, Leksah can as well use prebuild metadata it might find
on the web, to provide metadata for packages you have sources for, but the call to the Haddock library fails for some
reason.

The packages in the workspace are treated differently, as not only external exported entities are collected, but all
exports from all modules are collected. As well identifiers, which are not exported from a module get listed. The
source symbol for them is shown in gray.

This metadata is used to answer questions like:

• Which packages and modules export this identifier?

• What is the type of the exported identifier?

If the source was found, it lists as well :

• The comment for this identifier

• and can mark the item in the source file at the correct position

If you like to get information about some identifier in the code, the easiest way is to press Ctrl and double click on it.

More precisely the operation starts with a release of the left mouse button with a selection with Ctrl pressed; You can
use this if the double click doesn’t select the intended area. If the identifier is known unambiguously the modules and
info pane will show information about it. If more than one possibility exist the search pane will open and present the
alternatives.

The sorts of the identifiers shown are differentiated by the symbols you find in Table [tab:Sorts-of-identifiers]. Note
as well the special symbol for identifiers exposed, but only indirectly, because the definition is imported from another
module.

21

Leksah IDE, Release 0.16

5.1 The Module Browser

Fig. 5.1: [fig:Modules-browser]Module browser

The module browser ([fig:Modules-browser]) shows information about modules and their interface separated in
scopes: package, workspace, and system. If no package or workspace is open only the system scope has informa-
tion. (If a workspace/package is open, it’s name(s) are displayed in the third subdivision from the left of the status and
in the title bar.)

The scope of the displayed information is selected with the radio button on top of the modules pane: The Package
scope shows only modules which are part of the active project. The Workspace scope shows all modules of all packages
in the workspace. The System scope shows all modules of installed packages of the system.

(It lists all modules of installed packages. These you would get with ghc-pkg list. Leksah scans the user and the global
package database, when both are present).

The amount of information displayed may overwhelm you with details from packages that are not of interest to you
(Like e.g. like Haskell-98, ghc, or base-3.0*). Such packages can be excluded, by blacklisting them. The packages
you want to hide can be specified in the preferences and you can use the radio button at the right to hide them.

If you select a module in the modules list, its interface is displayed in the interface list on the right. You can search for
a module or package by selecting the modules list and typing some text. With the up and down arrows you find the
next/previous matching item. With the escape key or by selecting any other GUI element you leave the search mode.

If this icon shows up, Leksah has found a source file or source position for this element. You can open the source file,
or bring it to the front and display the source for the selected location with a double click on the element. (the same is
achieved with selecting Go to definition from the context menu.

This is the same as before, but is used for definitions not exported from the module.

22 Chapter 5. Module Browser and Metadata

Leksah IDE, Release 0.16

This icon indicates that the symbol is reexported from another module., because its long list is not much hierarchically
structured.

By selecting an element in the Interface List the so called Info Pane is shown with detailed information (see next
subsection).

The modules pane provides detailed information and are the quickest way to open a source file for edit. Go to the
modules pane, select package or workspace scope, possibly find the module by entering some text, and double click
on the module’s name to open the file in the editor for editing the file.

Fig. 5.2: [fig:Construct-module-dialog]Construct module dialog

From the context menu of (right-click) the modules pane you can add a new module by selecting Add module. The
Construct Module dialog will open ([fig:Construct-module-dialog]). You have to enter the name of the module, the
source path to use if alternatives exist. If the project is a library you have to specify if the module is exposed. Leksah
will construct the directory, modify the cabal file and construct an empty module file from a template (The template is
stored in the file module.lksht in the data folder of the project, and will be read from the .leksah-** folder if you want
to provide a different template file there.

The modification of the cabal file will currently only happen, if it does not contain configurations.

5.1.1 The Info Pane

The Info Pane is the lower pane of the module browser and shows information about an interface element, which may
be a function, a class, a data definition or a type (selected, for example, in the modules pane). It shows the identifier,
the package and module that it is exported by, it’s Haskell type and, if found, the Haddock documentation inserted in
the source as a comment.

5.1. The Module Browser 23

Leksah IDE, Release 0.16

If you select and initiate an identifier search in an editor pane, the information about this identifier is automatically
displayed in the info pane (maybe nothing!). The easiest way to do this is to double click on an identifier while pressing
Ctrl.

Only previously collected metadata is available this way. If the item has changed you could initiate an update of the
information collected with update workspace metadata (menu configuration update workspace data, or Ctrl-m).

If a source location is attached, you can go to the definition by clicking the Source button.

You can select the module and the interface element in the modules pane by clicking the Modules button.

With the Refs button a pane opens which displays modules which uses this element.

With the Docu button you can initiate an external search in a browser with e.g. Hayoo or Hoogle, depending on the
configuration in the Preferences.

With the Search button you can initiate a metadata search for the identifier.

5.2 The Search Pane

Fig. 5.3: [fig:Search-pane]Search pane

You can search for an identifier in the metadata by typing in characters in the entry at the bottom of the pane (not the
search entry at the bottom of the window!). The search result depends on the settings in the search pane ([fig:Search-
pane]). You can choose:

1. The scope in which to search, which can be Package, Workspace or System. For Package and Workspace scopes
you can search with or without imports, which gives 5 different scopes.

2. The way the search is executed, which can be exact, prefix or as a regular expression.

3. You can choose if the search shall be case sensitive or not.

The result of the search is displayed in the list part of the Search pane.

24 Chapter 5. Module Browser and Metadata

Leksah IDE, Release 0.16

You can see if the module reexports the identifier, or if the source of the identifier is reachable. When you single click
on a search result, the module browser shows the corresponding information. If you double click on an entry, the
modules and info pane shows the corresponding information.

If you double click on an identifier while pressing Ctrl in an editor pane, a case sensitive and exact search in the is
started.

5.2. The Search Pane 25

Leksah IDE, Release 0.16

26 Chapter 5. Module Browser and Metadata

CHAPTER 6

Debugger and Interpreter mode

These docs are outdated, we are working on getting them up-to-date for the next release

O0.3

|image|

|image|

You can switch Debugger mode on only from the toolbar with the:

toggle, which switches debugger Mode on or off.

In debugger mode the packages and modules for your current project are loaded into GHCi.

In debugger mode, the menu entries from the Debug menu are no longer disabled (Fig [fig:Debug-=000026-Buffer]),
and the context menu of source buffers have entries that were not meaningful in the regular (GHC) mode. There is
also a group of panes specifically used for debugging, allowing you to manage breakpoints, observe variables, etc.

You can open the debugger group pane by choosing Panes / Debugger. Commands using the debugger are given mostly
in the source editor pane with a context menu: You select some text and right-click to get the context menu. it lets you:

• Evaluate the selected expression in the interpreter and observe the result. If no text is selected the current line is
taken as input. Select eval. The result of the evaluation is shown in the log window and as it in the variables
pane. You can as well use the keystroke Ctrl-Enter.
Choose “Eval & Insert”, to insert a string representation of the result after the selected expression.

• Determine the type of an expression: Select the expression in a source buffer and select Type from the context
menu.

• Get info about an identifier select: Select Info from the context menu.

• Get the kind of a type select: Select Kind

• Step through code: Select the expression in a source buffer. Select step from the context menu (or F7). Use the
toolbar icons (or shortcuts) for stepping

Step (F6), Step local (F7)

Step in module (F8), Continue (F9)

27

Leksah IDE, Release 0.16

• Set breakpoints by putting the cursor at the breakpoint and select set breakpoint from the context menu. Run
your application or test cases and start stepping at the break point. After a break point is reached you use the
operations of GHCi with convenient shortcuts.

The debugger has a pane in which you can enter expressions and have them evaluated. The pane is a Haskell source
buffer, which has the reserved name _Eval. Its contents is saved with the session.

Note that:

• breakpoints are set on identifiers selected, not necessarily where you have found it in the source (e.g., used in an
expression);

• current breakpoints are listed in the breakpoints pane; you can remove breakpoints from this pane

• While stepping through code, you can observe variables in the variables pane. You can print or force a variable
from the context menu of the variables pane. You can update the pane from the context menu.

• You can observe an execution trace in the traces pane. Navigation in the traces pane is currently not supported
(:back, :forward).

• You can query information about the current state of GHCi from the Debugger menu. E.g. Show loaded modules,
Show packages and Show languages.

• You can directly communicate with GHCi by evaluating commands entered as text in the source editor and
select it. E.g. “:set . . . ”

For more information about debugging in GHCi read the GHCi section in the GHC manual.

Fig. 6.1: Debug Pane

28 Chapter 6. Debugger and Interpreter mode

CHAPTER 7

[sub:Metadata-collection]Metadata collection

These docs are outdated, we are working on getting them up-to-date for the next release

Remember, that metadata is the data Leksah has collected from all the Haskell code (including .hi files for installed
packages) it could reach on your computer.

The initial scan may take a long time (some minutes); when Leksah starts later, it checks only for changes, but does
not scan all files again. Metadata collection depends on the local configuration, especially the list of places where
Haskell code may be found, which is entered in the preferences. Occasionally, you may find it useful to rebuild the
metadata.

Metadata collection can be manually triggered: If you select Configuration -> Update workspace data, the metadata
for the current project is collected. This brings the metadata of the current project up-to-date. You can as well press
Ctrl-m or hit this symbol in the toolbar:

If you select Configuration -> Rebuild workspace data, the metadata for the current project is rebuild.

If you select Configuration -> Update system data, Leksah checks, if a new library has been installed and then collects
metadata for additions.

If you select Configuration -> Rebuild system data, Leksah rebuilds all metadata, which may take a long time. Cur-
rently the preferred way to do this is to call leksah-server -rbo +RTS -N2 from the command line. The reason for this
is that the server process may allocate a lot of memory during collection.

7.1 Background infos

The metadata collection itself proceeds different for workspace and system packages:

• For workspace packages Leksah just uses the parser without typechecking and maybe .hi files if available.

• For system packages Leksah uses .hi files and if sources are available Haddock as a library.

Collection for system packages works as follows:

1. Packages you installed with cabal from Hackage. If Leksah can’t find sources, it does a cabal unpack in the
source directory you specified for this in the preferences (By default .leksah-**/packageSources).

29

Leksah IDE, Release 0.16

2. Source files in the folders listed as source folder in the preferences. Leksah looks for all .cabal files it can
find below the source folders. Therefore, Leksah collects source information only from “Cabalized” projects
(i.e., projects that have a .cabal file). From this information the file source_packages.txt in the .leksah folder is
written. If you miss sources for a package in Leksah, consult this file if the source place of the package has been
correctly found. You can run this step by typing in a terminal: leksah-server -o (or –sources).

3. Problems may occur due to preprocessing, header files, language extensions, etc. Error message produced while
metadata collection indicate that not all information for a package was found. If the Haddock call doesn’t
succeed, Leksah looks if it can download a prebuild metadata package from the server, if this option is selected
in the preferences.

4. The result of metadata collection is stored in the folder .leksah-*.*/metadata in files called *.lkshm. In this folder
for every package a metadata file is stored (e.g. binary-0.4.1.lkshm). These files are in binary format. If you
want to rebuild just one package you can delete it here and update the system metadata. The files .lkshe specify
the base path to sources, if the collection for sources was successfully or if a metdata file could be downloaded
for this.

For the workspace packages a different procedure is used.

1. Metadata is collected from the source directories of the packages you are working on. The results are stored in
a per module base in a folder with the package name (e.g .leksah-*.*/metadata/package-*.*.*).

2. Update happens on a per file base only for changed source files.

Fig. 7.1: [fig:Metadata-Preferences]Metadata Preferences

30 Chapter 7. [sub:Metadata-collection]Metadata collection

CHAPTER 8

Configuration

These docs are outdated, we are working on getting them up-to-date for the next release

Leksah is highly customizable and can be adapted to your specific needs and work organization. What follows here is
not needed for initial use of Leksah (and need not be read on a first lecture of the manual). Leksah works well with the
default settings and a desire to adapt better to your work habits comes only with extended use of Leksah. However,
with time, you may use one or the other option to tailor Leksah to your personal preference. It is easy! Here it is
explained how this works.

8.1 Layout

O0.3

|image|

|image|

|image|

Leksah has always one special pane, which is called the active pane, and its name is displayed in the second compart-
ment from the left side in the status bar. Some actions like moving, splitting, closing panes or finding or replacing
items in a text buffer act on the current pane, so check the display in the status bar to see if the pane you want to act
on, is really the active one.

You can tailor the layout with the View menu to suit your work style better. Internally, the panes are arranged in
a layout of a binary tree, where the leaves are horizontal or vertical splits. Every area can be split horizontally or
vertically and panes can collapse. With the commands in the View menu you manipulate this tree to change the layout.

In the initial pane positions part of the Preferences, you can configure the placement of panes. Panes belongs to
categories, and a category specify a path were a pane will open .

The layout of the Leksah window contains areas which contain notebooks which contain panes. The division between
the two areas is adjustable by the user by dragging a handle.

31

Leksah IDE, Release 0.16

Panes can be moved between areas in the window. This can be done by dragging the notebook tab, and release it on
the frame of another notebook. Alternatively you can use keystrokes (Shift Alt Arrow) to move panes around. The
tabs of notebooks can be positioned at any of the four directions, or the tabs can be switched off.

Note that holding the mouse over the tabs and selecting the right button brings up a menu of all panes in this area, so
that you can for example quickly select one of many open source buffers.

The layout will be saved with sessions. The session mechanism will be explained in [sub:Session-handling]. [1]_

8.1.1 Advanced layout: Group panes

A notebook cannot only contain single panes, but it can as well contain group panes, which have a layout on their own
and may contain arbitrary other panes; the debug pane is an example for a group pane. This gives you the possibility
to arrange the subpanes in a debugger pane as it fits you best.

A new group starts by selecting View / Group from the menu. You have to give a unique name for the group. Then you
can arrange panes in the group as you like. When closing a group, and the group is not empty, you have to confirm it.

8.1.2 Using Leksah with multiple displays: Detached windows

This feature allows you to move panes to a separate window on a separate display. This is as simple as: You select a
notebook and choose View / Detach from the menu bar. Then the notebook is opened in a new window, which you
can then move to another screen.

When you close the detached window, the pane goes back to the place where it was before detaching. The state of
detached window is remembered, when you close Leksah, and they will be reopened when you restart Leksah.

It is possible to drag and drop panes between windows. But splitting and collapsing of panes is disabled for detached
windows. So a recommended way to use this feature is to split a pane, arrange the panes that you want to detach in the
area of the new notebook. Select the new notebook and detach.

The detached windows have no menu bar, toolbar and status bar on their own. This may be a problem, when you want
to select a menu entry: the focus changes from a pane in the detached window to a pane in the main window, and you
may not be able to do what you want. We recommend that you use keystrokes or context menus.

8.2 [sub:Session-handling]Session handling

When you close Leksah the current state is saved in the file current.lksks in the ~/.leksah-*.* folder. A session contains
the layout of the window, its content, the active package and some other state. When you restart Leksah it recovers the
state from this information.

When you close a workspace, the session is saved in the folder of the workspace in a file named workspacename.lksks.
When you open a workspace and Leksah finds a workspacename.lksks file together with the workspace file you are
going to open, you get prompted if you want to open this session (this means mostly opening the files you had open
before in the editor). This helps you to switch between different workspaces you are working on.

In addition, sessions can be stored and loaded with a name manually by using the session menu, but the need to use
these features occurs rarely. The menu Configuration -> Forget Session is useful if you inadvertently changed the
layout drastically and do not want the current session to be stored.

32 Chapter 8. Configuration

Leksah IDE, Release 0.16

8.3 [sub:Shortcuts]Shortcuts

You can configure the keystrokes by providing a keymap file, which should be be in the ~/.leksah-0.8 folder. The name
of the key map file to be used can be specified in the Preferences dialog (without extension!).

A line in the .keymap file looks like:

<ctrl>o -> FileOpen Opens an existing file

Description of the key or key combination: Allowed modifiers are <shift> <ctrl> <alt> <apple> <compose>. <apple>
is on a Microsoft keyboard the windows key (and on a Mac, obviously, the apple key!). <compose> is right ALT key,
often labeled Alt Gr. It is as well possible to specify Emacs like keystrokes in the following way: <ctrl>x/<ctrl>f ->
FileOpen Opens an existing file

The name of the action can be any one of the ActionDescr’s given in the action function in the Module IDE.Command.
The comment following will be displayed as tool tip for the toolbar button, if one exists for this action.

Every keystroke must at most be associated with one action, and every action may only have one associated keystroke.

Simple keystrokes are shown in the menu, but Emacs like keystrokes are not. This is because simple keystrokes are
handled by the standard GTK mechanism, while other keystrokes are handled by Leksah.

Independently how you initiated an action, by a menu, a toolbar button or a keystroke, the keystroke with its associated
ActionsString is displayed in the Status bar in the leftmost compartment.

8.4 Configuration files

Leksah stores its configuration in a directory called ~/.leksah-*.* under your home folder. Indexing the hidden Lek-
sah directory with the version number avoids that changes to preferences file layout from version to version cause
difficulties. Moving your preferences from a previous version can potentially be automatic.

The file prefs.lkshp stores the general preferences. It is a text file you could edit with a text editor, but more comfortable
and safer is to do it in Leksah with the menu Configuration / Edit Prefs from the menu.

If no preference file is found in your .leksah-*.* folder then the global prefs.lkshp in the installed data folder will be
used. If a preference file get corrupted, which means Leksah does not start; it is then often sufficient to just delete the
preference file.

The source_packages.txt file stores source locations for installed packages. It can be rebuild by calling leksah-server
in a terminal with the -o or –sources argument . Do this after you moved your source or added sources for previous
installed packages without sources.

Files for Keymaps (keymap.lkshk) and SourceCandy(candy.lkshc) may be stored in the ~/.leksah-*.* folder and will
be found according to the name selected in the Preferences Dialog. Leksah first searches in this folder and after this in
the /data folder.

8.3. [sub:Shortcuts]Shortcuts 33

Leksah IDE, Release 0.16

34 Chapter 8. Configuration

CHAPTER 9

The Leksah Project

These docs are outdated, we are working on getting them up-to-date for the next release

The development of an integrated Development Environment is a major undertaking and Leksah should become in-
creasingly supported by the user community. If you are a user or just test Leksah, we would appreciate to here from
you. Do not miss to report bugs, unclear or wrong information in the documentation and suggestion for improvements
on the Leksah issue tracker.

Everyone is invited to contribute. Spreading the word, supplying error reports, providing keymap and candy files,
providing a tutorial, caring for a platform will develop are all helpful and meaningful ways to contribute.

Leksah will advance over time and become more useful. Possible extension and enhancements are:

• Package editor with configurations

• Add traces to the Debugger

• Support for some kind of plug-ins or extensions

• Context enriched completion

• Version Control (Darcs, . . .)

• Testing (Quick check,. . .)

• Object browser

• Coverage (HPC,. . .)

• Profiling (Ghc Profiler,. . .)

• Re-factoring (HaRe,. . .)

• FAD (Functional Analysis and Design,. . .)

Acknowledgment

Thanks to Ricardo Herrmann for making the new Leksah logo.

Thanks to Fabian Emmes, who created the icons for the module browser.

Thanks to Lakshmi Narasimhan for packaging for Fedora.

35

Leksah IDE, Release 0.16

Thanks to all others who helped us with patches, bug reports and helpful feedback.

36 Chapter 9. The Leksah Project

CHAPTER 10

Appendix

These docs are outdated, we are working on getting them up-to-date for the next release

10.1 Command line arguments

for leksah-server:

Leksah Haskell IDE (server) Usage: leksah-server [OPTION. . .] files. . .

-s –system Collects new information for installed packages

-r[Maybe Port] –server[=Maybe Port] Start as server.

-b –rebuild Modifier for -s and -p: Rebuild metadata

-o –sources Modifier for -s: Gather info about pathes to sources

-v –version Show the version number of ide

-h –help Display command line options

-d –debug Write ascii pack files

-e Verbosity –verbosity=Verbosity One of DEBUG, INFO, NOTICE, WARNING, ERROR, CRITI-
CAL, ALERT, EMERGENCY

-l LogFile –logfile=LogFile File path for logging messages

-f –forever Don’t end the server when last connection ends

-c –endWithLast End the server when last connection ends

for leksah:

Usage: leksah [OPTION. . .] files. . .

-v –Version Show the version number of ide

-l NAME –LoadSession=NAME Load session

37

Leksah IDE, Release 0.16

-h –Help Display command line options

-e Verbosity –verbosity=Verbosity One of DEBUG, INFO, NOTICE, WARNING,

ERROR, CRITICAL, ALERT, EMERGENCY

10.2 The Candy file

-> 0x2192 Trimming –RIGHTWARDS ARROW

<- 0x2190 Trimming –LEFTWARDS ARROW

=> 0x21d2 –RIGHTWARDS DOUBLE ARROW

>= 0x2265 –GREATER-THAN OR EQUAL TO

<= 0x2264 –LESS-THAN OR EQUAL TO

/= 0x2260 –NOT EQUAL TO

&& 0x2227 –LOGICAL AND

|| 0x2228 –LOGICAL OR

++ 0x2295 –CIRCLED PLUS

– :: 0x2237 Trimming –PROPORTION

– .. 0x2025 –TWO DOT LEADER

^ 0x2191 –UPWARDS ARROW

== 0x2261 –IDENTICAL TO

. 0x2218 –RING OPERATOR

\ 0x03bb –GREEK SMALL LETTER LAMBDA

=<< 0x291e –

>>= 0x21a0 –

– $ 0x25ca –

>> 0x226b – MUCH GREATER THEN

forall 0x2200 –FOR ALL

– exist 0x2203 –THERE EXISTS

not 0x00ac –NOT SIGN

alpha 0x03b1 –ALPHA

beta 0x03b2 –BETA

gamma 0x03b3 –GAMMA

delta 0x03b4 –DELTA

epsilon 0x03b5 –EPSILON

zeta 0x03b6 –ZETA

eta 0x03b7 –ETA

theta 0x03b8 –THETA

38 Chapter 10. Appendix

Leksah IDE, Release 0.16

10.3 The Keymap file

–Default Keymap file for Leksah

–Allowed Modifiers are <shift> <ctrl> <alt> <apple> <compose>

–<apple> is the Windows key on PC keyboards

–<compose> is often labelled Alt Gr.

–The defined values for the keys can can be found at

– http://gitweb.freedesktop.org/?p=xorg/proto/x11proto.git;a=blob_plain;f=keysymdef.h.

– The names of the keys are the names of the macros without the prefix.

–File

<ctrl>n -> FileNew Opens a new empty buffer

<ctrl>o -> FileOpen Opens an existing file

–<ctrl>x/<ctrl>f -> FileOpen Opens an existing file

<ctrl>s -> FileSave Saves the current buffer

<ctrl><shift>s -> FileSaveAll Saves all modified buffers

<ctrl>w -> FileClose Closes the current buffer

<alt>F4 -> Quit Quits this program

–Edit

<ctrl>z -> EditUndo Undos the last user action

<shift><ctrl>y -> EditRedo Redos the last user action

–<ctrl>x/r -> EditRedo Redos the last user action

<ctrl>a -> EditSelectAll Select the whole text in the current buffer

<ctrl>f -> EditFind Search for a text string (Toggles the

F3 -> EditFindNext Find the next occurence of the text string

<shift>F3 -> EditFindPrevious Find the previous occurence of the text string

<ctrl>l -> EditGotoLine Go to line with a known index

<ctrl><alt>Right -> EditComment Add a line style comment to the selected lies

<ctrl><alt>Left -> EditUncomment Remove a line style comment

<alt>Right -> EditShiftRight Shift right

<alt>Left -> EditShiftLeft Shift Left

–View

<alt><shift>Left -> ViewMoveLeft Move the current pane left

<alt><shift>Right -> ViewMoveRight Move the current pane right

<alt><shift>Up -> ViewMoveUp Move the current pane up

<alt><shift>Down -> ViewMoveDown Move the current pane down

<ctrl>2 -> ViewSplitHorizontal

10.3. The Keymap file 39

http://gitweb.freedesktop.org/?p=xorg/proto/x11proto.git;a=blob_plain;f=keysymdef.h

Leksah IDE, Release 0.16

Split the current pane in horizontal direction

<ctrl>3 -> ViewSplitVertical

Split the current pane in vertical direction

<ctrl>1 -> ViewCollapse Collapse the panes around the currentla selected pane into one

-> ViewTabsLeft Shows the tabs of the current notebook on the left

-> ViewTabsRight Shows the tabs of the current notebook on the right

-> ViewTabsUp Shows the tabs of the current notebook on the top

-> ViewTabsDown Shows the tabs of the current notebook on the bottom

-> ViewSwitchTabs Switches if tabs for the current notebook are visible

<ctrl>t -> ToggleToolbar

-> HelpDebug

-> HelpAbout

<ctrl>b -> BuildPackage

<ctrl>r -> AddAllImports

<ctrl><alt>r -> RunPackage

<ctrl>j -> NextError

<ctrl><shift>j -> PreviousError

<ctrl>o -> ShowModules

–<ctrl>i -> ShowInterface

– <ctrl>i -> ShowInfo

<ctrl><shift>e -> EditAlignEqual

<ctrl><shift>l -> EditAlignLeftArrow

<ctrl><shift>r -> EditAlignRightArrow

<ctrl><shift>t -> EditAlignTypeSig

<alt>i -> AddOneImport

<alt><shift>i -> AddAllImports

– For the next to entries the <ctrl> modifier is mandatory

<ctrl>Page_Up -> FlipUp Switch to next pane in reverse recently used oder

<ctrl>Page_Down -> FlipDown Switch to next pane in recently used oder

<ctrl>space -> StartComplete Initiate complete in a source buffer

F6 -> DebugStep

F7 -> DebugStepLocal

F8 -> DebugStepModule

F9 -> DebugContinue

<ctrl>Return -> ExecuteSelection

<ctrl>m -> UpdateMetadataCurrent

40 Chapter 10. Appendix

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

41

	Introduction
	Further Information
	Release Notes

	Installing Leksah[sec:Installing-Leksah]
	How to Install: Brief Instructions
	Microsoft Windows
	Mac OS X
	Linux from Distro Packages
	Install from Hackage
	Post Installation steps
	First start of Leksah
	First start dialog

	Hello World example
	The Editor
	Find and Replace in the current folder
	Source Candy
	[sub:Completion]Completion
	[sub:Using-the-Flipper]Using the Flipper to Switch Between Editors
	[sub:Editor-Preferences]Change Your Preferences for the Editor
	Further info

	Module Browser and Metadata
	The Module Browser
	The Search Pane

	Debugger and Interpreter mode
	[sub:Metadata-collection]Metadata collection
	Background infos

	Configuration
	Layout
	[sub:Session-handling]Session handling
	[sub:Shortcuts]Shortcuts
	Configuration files

	The Leksah Project
	Appendix
	Command line arguments
	The Candy file
	The Keymap file

	Indices and tables

